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Abstract: Adverse impact of large fossil fuel based conventional 
generation plants on the environment and the challenge of 
fulfilling the growing demand for electrical power has generated 
interest in usage and installation of distributed generation. 
Emerging renewable energy technologies offer possibilities for 
using small scale generation sources not only for standalone 
systems but also for supplying the surplus power to the grid. 
However optimal location and sizing of distributed generation 
unit is crucial for improving the voltage profile and minimizing 
the network losses. This paper presents an analysis of three 
particle swarm optimization (PSO) techniques for optimal sizing 
and location of a single distributed generation unit in an IEEE 14 
bus system and the effect on the network losses and voltage 
profile is presented. 

1. INTRODUCTION 

Liberalized Electricity markets, constraints on installation of 
new distribution and transmission setup and environmental 
effects of emissions have been the motivation behind recent 
interest in Distributed Generation (DG) for the power systems. 
Advances in the technology of power electronics, small scale 
generators, and energy storage devices for transient backup 
have also accelerated the penetration of DG into electric 
power generation plants [1]. 

There are several technologies for DG ranging from 
conventional ones like combustion turbines, combined cycles 
etc. to Renewable ones including wind, solar, photovoltaic and 
fuel cells. Although renewable sources eliminate or reduce 
emissions but have relatively low efficiencies, high costs, and 
intermittency [2], [3]. 

Modeling of DG units has been done as synchronous 
generators, and induction generators for combustion turbines, 
geothermal plants and wind turbines or small scale hydro 
power respectively. DG units have also been modeled as 
power electronics based inverter generators for photovoltaic 
(PV) plants and fuel cells [4], [5]. Loss reduction is the focus 
of most utilities as it directly impacts the economy and quality 

of power supply. Therefore in this paper loss reduction is the 
primary objective with the bus voltage deviations being the 
secondary one. A method based on genetic algorithm (GA) 
has been proposed for determination of location and size of 
DG [6], [7]. New modified methods based on GA are 
proposed in [8,9].GA is well suited for multi objective 
optimization as it can lead to near optimal solutions but suffers 
from the limitation of larger computational time requirement. 
An exact formula for loss based on analytical approach is 
presented for a single DG in [10]. A methodology based on 
Tabu Search (TS) is proposed for optimally locating DG units 
to minimize power losses in [11]. Falaghi and Haghifam have 
given a method for DG source allocation using Ant Colony 
Optimization (ACO) in [12].Discrete PSO and optimal Power 
Flow (OPF ) has been used for placing optimal sized DG in 
[13] whereas combined GA and PSO hybrid has been 
implemented in [14].  

This paper has evaluated the optimal location and sizing of a 
single DG required for fulfilling the objectives of loss 
reduction and bus voltage deviation reduction. Two cases have 
been considered for this purpose wherein first loss reduction 
alone is taken as the objective and then bus voltage deviations 
are considered alongside loss reduction. 

2. PARTICLE SWARM OPTIMIZATION (PSO) 

Particle Swarm Optimization is one of the most popular 
heuristic search algorithms which emerged through study of 
social learning of birds or fishes [15]. It is a swarm based 
intelligence technique developed by Eberhart and Kennedy 
[base] in 1995. Analogous to swarm populations of animal 
herds a population of random sets of solutions known as 
particles are initialized. Each particle moves through the 
search space and corresponding to it’s position ‘fitness’ is 
calculated in each iteration which is simply the objective 
function value for the particular particle or solution set.  
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Based on the evaluation of this ‘fitness’ the particle position 
update is carried out by calculating the velocity corresponding 
to it. This velocity depends on various parameters assigned to 
the particle such as inertia weight, acceleration factors, and 
personal best positions as well as global best positions attained 
till the current iteration. The velocity and position equations 
for the PSO are given as:  
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Where, p = 1,2,…,S  and q = 1,2,…D. S is the swarm size and 
D is the dimension of the search space. 

ω  is the inertia weight factor, 
k

pqX  is the position at the thk  

iteration of the th
p  particle of  dimension q . 

k
pqV  is the 

velocity at the thk  iteration of the th
p  particle of  dimension 

q . 1c , 2c  are the acceleration factors. 1r  and 2r  are random 

numbers of uniform distribution. k
pqPbest  is the best position 

of the th
p  particle of  dimension q  upto thk  iteration. 

k
pqGbest  is the best position of the whole group of particles of  

dimension q  upto thk  iteration.  

2.1 Linearly Decreasing Inertia Weight Strategy (LVIW 

PSO) 

The concept of inertia weight was not present in the Basic 
PSO given by Eberhart and Kennedy [16]. Inertia weight as a 
factor was first presented by shi and Eberhart in [17] where 
they used a constant value of inertia. Larger or smaller values 
of inertia can favour global or local search respectively. Thus 
in [18] linearly decreasing inertia weight strategy was 
proposed having improved ability for optimal convergence. 
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Where  1+kω   is the inertia weight for the iteration 1+k , 

maxk  is the maximum number of iterations. maxω  is the 

maximum inertia weight, and minω  is the minimum inertia 

weight.  

2.2 Natural Exponent Inertia Weight Strategy 

Natural exponent decrement of inertia weight was presented in 
[19] by chen et .al. these strategies namely e1 PSO and e2 
PSO have faster convergence at the starting stage of the search 
process. Bansal et al. in [15] have discussed the performance 

of various inertia weight strategies. e1 PSO has been used in 
this paper for evaluation and it’s inertia weight equation is 
given as [16]: 
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2.3. Time Varying Acceleration Coefficients Strategy (TVAC 

PSO) 

Acceleration coefficients 1c  and 2c  affect the cognitive and 

social components of the searching process [20]. For any 

iteration 1+k  the cognitive acceleraton 
1

1
+k

c  and social 

acceleration 
1

2
+k

c  is given by: 

( ) min1
max

max1min1
1

1 c
k

k
ccc

k
+−=

+    (5) 

( ) max2
max

min2max2
1

2 c
k

k
ccc

k
+−=

+   (6) 

Where min1c  and max1c  are the minimum and maximum 

values of cognitive acceleration respectively. min2c  and max2c  

are the minimum and maximum values of social acceleration 
respectively.  

3. PROBLEM FORMULATION 

To achieve loss minimization, a single DG is modelled here as 
a generator bus [21]. The primary objective for optimization is 
the following function: 

∑
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Where, LossP  is the total active power loss in the network, l is 

the total number of transmission branches, loss is the power 
loss at k branch. Additionally, SSEV (Sum of Squared Error 

Voltages) is taken up as the second objective for minimization 

where voltage magnitude of  thk  bus is denoted by kV . 
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To optimize both the objectives the concept of weight factor is 
used .The combined objective CO  is defined as follows: 

SSEVwPwCO Loss ×+×= 21min    (9) 

Where 1w  and 2w  are weight factors respectively and sum of 

the weight factors is equal to one. 
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GkP  is the total generated active power at the 

is the total demand of active power at the th
j

number of buses in the system. 
max

kV and 

maximum and minimum permissible voltage magnitudes. 
max

DGP And min
DGP  are the maximum and minimum active power 

generation considered for the DG installation. 

4. RESULTS AND DISCUSSIONS 

The standard IEEE 14 bus system as shown in Figure 1 has 
two generators at bus number 1 and 2. Generator at bus 
number 1 is assumed to be slack bus for load flow purposes. 
The generator at bus number 2 is of rating 40 MW. Moreover 
three voltage controlled buses having synchronous condensers 
are present at bus locations 3, 6, 8. All other buses are load 
buses. Out of the three transformers connected in the system 
one is a three winding transformer which connects bus number 
4, 7, and 8, 9.The maximum and minimum limit for the active 
power generation of DG has been taken as 20MW and 0 MW 
respectively. For the inertia weight maximum and minimum a 
value has been taken as 0.9 and 0.4 respectively. For the 

TVAC PSO acceleration factors min1c  and 2c

0.2 while max1c  and max2c have a value of 2.5. Two cases 

have been considered for the optimal allocation of DG.
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Figure 1.  IEEE 14 Bus System  

In the first case only real power loss is taken as the objective. 
Table 1 shows the optimal location and size obtained for all 
the three techniques along with the effect on power loss and 
total voltage deviation. Figure 2 shows the total bus deviation 
for the applied strategies compared to the condition without 
DG while Convergence characteristics have been shown in 
figure 3 

Table 1.  Case I: DG Location, Sizing and Effects

DG Placing 
Strategy 

LVIW 
PSO 

e1
PSO

DG Output 
(MW) 

40.00000 40.00000

Bus No. 3 3 

Power loss 
(MW) 

8.97428 8.97428

Power loss 
Reduction (%) 

33.97827 33.97827

SSEV(pu) 0.02906 0.02906

SSEV 
Reduction (%) 

-0.55363 -0.55363

 

Figure 2.  Case I: Overall Bus Voltage Deviation 

Since Taking active power loss as the only objective has 
increased the overall bus voltage deviations therefore the 
second case is considered where SSEV is taken as the second 

objective to be minimized. The weight factor 

taken for active power loss and SSEV are 0.5 and 0.5 
respectively. Table 2 shows the results for DG location and 
size while figure 4 and 5 show the improvement in voltage 
deviations and convergence characteristics for the case II 
respectively. 
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Figure 3.  Case I: Convergence characteristics

Table 2.  Case II: DG Location, Sizing and Effects

DG Placing 
Strategy 

LVIW 
PSO 

e1 
PSO 

TVAC 
PSO

DG Output 
(MW) 

40.00000 40.00000 40.00000

Bus No. 7 7 7 

Power loss 
(MW) 

9.83054 9.83054 9.83054

Power loss 
Reduction 
(%) 

27.67896 27.67896 27.67896

SSEV(pu) 0.01648 0.01648 0.01648

SSEV 
Reduction 
(%) 

42.97577 42.97577 42.97577

 

Figure 4.  Case II: Overall Bus Voltage Deviation 
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Table 2.  Case II: DG Location, Sizing and Effects 
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- 

9.83054 13.59292 

27.67896 - 
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Figure 4.  Case II: Overall Bus Voltage Deviation  

Figure 5.  Case II: Convergence characteristics

5. CONCLUSION 

The three PSO strategies evaluated in this paper have obtained 
similar optimal results for the IEEE 14 bus system. Optimal 
location and sizing with only loss minimization as objective 
reduced active power losses significantly but the total bus 
voltage deviation increased. This limitation was resolved by 
including SSEV as the second objective for minimization. The 
scope for further work would inclu
larger bus systems with reactive power considerations.

REFERENCES 

[1] M. N. Marwali, J. W. Jung, and A. Keyhani, “Stability analysis 
of load sharing control for distributed generation systems,” 
IEEE Trans. Energy Convers., vol. 22, no. 3, pp. 737
2007. 

[2] W. Li, G. Joos, and J. Belanger, “Real
turbine generator coupled with a battery supercapacitor energy 
storage system,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 
1137–1145, Apr. 2010. 

[3] A. Pigazo, M. Liserre, R. A. Mastromauro, V. M. Moreno, and 
A. Dell’Aquila, “Wavelet-based islanding detection in grid
connected PV systems,” IEEE Trans. Ind. Electron., vol. 56, no. 
11, pp. 4445–4455, Nov. 2009. 

[4] F. Blaabjerg, R. Teodorescu, M. Liserre, a
“Overview of control and grid synchronization for distributed 
power generation systems,” IEEE Trans. Ind. Electron., vol. 53, 
no. 5, pp. 1398–1409, Oct. 2006. 

[5] H. B. Puttgen, P. R. MacGregor, and F. C. Lambert, 
“Distributed generation: Semantic hype or the dawn of a new 
era?” IEEE Power Energy Mag., vol. 1, no. 1, pp. 22
Jan./Feb. 2003. 

[6] A. Silvestri, A. Berizzi, and S. Buonanno, “Distributed 
generation planning using genetic algorithms,” in Proc. IEEE 
Int. Conf. Elect. Power Eng., PowerT
257. 

0.03 0.04

Overall Bus Voltage Deviation

Tushar Kumar, Tripta Thakur 

5812 Volume 1, Number 5 (2014) 

 

Figure 5.  Case II: Convergence characteristics 

The three PSO strategies evaluated in this paper have obtained 
similar optimal results for the IEEE 14 bus system. Optimal 

ith only loss minimization as objective 
reduced active power losses significantly but the total bus 
voltage deviation increased. This limitation was resolved by 
including SSEV as the second objective for minimization. The 
scope for further work would include implementation on 
larger bus systems with reactive power considerations. 

M. N. Marwali, J. W. Jung, and A. Keyhani, “Stability analysis 
of load sharing control for distributed generation systems,” 

, vol. 22, no. 3, pp. 737–745, Sep. 

W. Li, G. Joos, and J. Belanger, “Real-time simulation of a wind 
turbine generator coupled with a battery supercapacitor energy 
storage system,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 

A. Pigazo, M. Liserre, R. A. Mastromauro, V. M. Moreno, and 
based islanding detection in grid-

connected PV systems,” IEEE Trans. Ind. Electron., vol. 56, no. 

F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, 
“Overview of control and grid synchronization for distributed 
power generation systems,” IEEE Trans. Ind. Electron., vol. 53, 

 

H. B. Puttgen, P. R. MacGregor, and F. C. Lambert, 
ntic hype or the dawn of a new 

era?” IEEE Power Energy Mag., vol. 1, no. 1, pp. 22–29, 

A. Silvestri, A. Berizzi, and S. Buonanno, “Distributed 
generation planning using genetic algorithms,” in Proc. IEEE 
Int. Conf. Elect. Power Eng., PowerTech Budapest, 1999, p. 



Network Loss Minimization with Voltage Profile Considerations through Optimal Allocation of  
Distributed Generation using Particle Swarm Optimization Techniques 105 

Advanced Research in Electrical and Electronic Engineering  
Print ISSN: 2349-5804; Online ISSN: 2349-5812 Volume 1, Number 5 (2014) 

[7] K. H. Kim, Y. J. Lee, S. B. Rhee, S. K. Lee, and S. K. You, 
“Dispersed generator placement using fuzzy-GA in distribution 
systems,” in Proc. IEEE Power Eng. Soc. Summer Meet., 2002, 
vol. 3, pp. 1148–1153. 

[8] López-Lezama JM, Contreras J, Padilha-Feltri A. Location and 
contract pricing of distributed generation using a genetic 
algorithm. Int J Electr Power Energy Syst 2012;36:117–26. 

[9] Raoofat M. Simultaneous allocation of DGs and remote 
controllable switches in distribution networks considering 
multilevel load model. Int J Electr Power Energy Syst 
2011;33:1429–36. 

[10] N. Acharya, P. Mahat, and N. Mithulananthan, “An analytical 
approach for DG allocation in primary distribution network,” 
Int. J. Elect. Power Energy Syst., vol. 28, no. 10, pp. 669–678, 
Dec. 2006. 

[11] Nara K, Hayashi Y, Ikeda K, Ashizawa T. "Application of Tabu 
Search to optimal placement of distributed generators. In: Proc 
IEEE power engineering society winter meeting", vol. 2; 2001, 
p. 918–23. 

[12] Falaghi H, Haghifam MR. ACO based algorithm for distributed 
generation sources allocation and sizing in distribution systems. 
In: Proc IEEE Power Tech; 2007. p. 555–60. 

[13] M. Gomez-Gonzalez, A. López, and F. Jurado, “Optimization of 
distributed generation systems using a new discrete PSO and 
OPF,” Elect. Power Syst. Res., vol. 84, no. 1, pp. 174–180, Mar. 
2012. 

[14] M. H. Moradi and M. Abedini, “A combination of genetic 
algorithm and particle swarm optimization for optimal DG 
location and sizing in distribution systems,” Int. J. Electr. Power 
Energy Syst., vol. 34, no. 1, pp. 66–74, Jan. 2012. 

[15] Bansal J.C., Singh P.K., Saraswat M., Verma A, Jadon S.S., 
Abraham A, "Inertia Weight strategies in Particle Swarm 
Optimization," Nature and Biologically Inspired Computing 
(NaBIC), 2011 Third World Congress on , vol., no., pp.633,640, 
19-21 Oct. 2011 

[16] Kennedy J., Eberhart R., "Particle swarm optimization," Neural 
Networks, 1995. Proceedings., IEEE International Conference 
on , vol.4, no., pp.1942,1948 vol.4, Nov/Dec 1995 

[17] Y. Shi and R. Eberhart., “A modified particle swarm optimizer”, 
In Evolutionary Computation Proceedings, 1998. IEEE World 
Congress on Computational Intelligence., The 1998 IEEE 
International Conference on, pages 69–73. IEEE, 2002. 

[18] J. Xin, G. Chen, and Y. Hai., “A Particle Swarm Optimizer with 
Multistage Linearly-Decreasing Inertia Weight”, In 
Computational Sciences and Optimization, 2009. CSO 2009. 
International Joint Conference on, volume 1, pages 505–508. 
IEEE, 2009. 

[19] G. Chen, X. Huang, J. Jia, and Z. Min., “Natural exponential 
Inertia Weight strategy in particle swarm optimization”, In 
Intelligent Control and Automation, 2006. WCICA 2006. The 
Sixth World Congress on, volume 1, pages 3672–3675. IEEE, 
2006. 

[20] Asanga Ratnaweera, Saman K. Halgamuge, and Harry C. 
Watson, “Self organizing hierarchical particle swarm optimizer 
with time-varying acceleration coefficients”, IEEE Transactions 
on Evolutionary Computation, Vol.8, No.3, June 2004, pp. 240-
254. 

 


